

Functional Imaging Patients with Epilepsy

William Davis Gaillard

Children's National Hospital G^{eo} Washington University Washington DC

New Yorker

Disclosure Slide: William Davis Gaillard

- Supported by Federal Grants R01 NS44280 NINDS, R01 MH65395 NIMH, P30HD40677 NICHD, U54 MH066417 & Clinical Epilepsy Section NINDS, NIH.
- Co-Investigator (Not PI, no salary support) on several Pharmaceutical Industry supported AED clinical trials: Rectal Diazepam, Oxcarbazine, Lamotrigine, Zonisimide, Vigabatrin, Tiagabine, Gabapentin, Clobazam, Rufinimide.
- I do use pens and flashlights from industry with logo.
- I WILL discuss off label use of PET ligands used on a research basis under FDA IND.

Question 1

- The single most helpful test for evaluating the cause of epilepsy and for identifying the epilepsy focus is:
- 1. FDG-PET
- 2. functional MRI
- 3. High resolution structural MRI
- 4. Low radiation CT
- 5. HMPAO ictal SPECT
- 6. MEG source imaging

Epilepsy & Functional Imaging

- Direct treatment of Surgical Planning
- Confirmation of focus (critical for epilepsy surgery)
- Identify areas to be spared during epilepsy surgery (cortical and white matter)

- PET
- SPECT
- Functional MRI for brain mapping
- DWI for white matter tract identification
- MR Spectroscopy (MRS)

Class 1A Seizure Outcome 2004 ILAE Pediatric Outcome Survey

*PET/SPECT/MEG+ 40-60% EI; Image - <20%

Courtesy G Mathern

Question 2

- Which ligand is most common clinically used for PET
- 1. Cyclofoxy
- 2. Flumazanil
- 3. FDG
- 4. O-15 Water

PET Methods

- Radio tracers tagged to compounds designed to target a physiologic process
 - Blood flow, metabolism, neurotransmitter precursor, receptor binding (agonist/antagonist)
- Information gained limited by tracer half life
 - ¹⁸F90 minutesFDG PETDecrease
 - -¹¹C 20 minutes Flumazenil Decrease

ά Methyl Trypotphan Increase

• Requires image acquisition shortly after injection

PET (& SPECT) Methods
PET patient studies require EEG

Ictal vs. interictal

- Analysis
 - -Visual
 - Region of interest (superior to visual analysis adult data, Theodore et al. Ann Neurol 1992) with laterality index
 - Voxel based (e.g. SPM) (beyond 2-3SD mean signal voxle based on Normal ("normal") data

Imaging: FDG-PET

- Measure of metabolic rate: Glucose uptake and consumption
- Ictal FDG-PET uncommon and unreliable
- Interictal: Regional hypometabolism 90% adults with temporal lobe epilepsy (most childhood onset)
- Regional hypometabolism more widespread than epileptogenic zone
- Regional hypometabolism: Good surgical outcome adults with childhood onset epilepsy (class 2)
- Reduces need for invasive (less extensive) recording
- FDG-PET less helpful in neocortical epilepsy (50-60%)

FDG-PET

- Correctly lateralize focus in 60% children with intractable partial epilepsy (including those with normal MRI)
- May be helpful in young, < 2 years, when MRI less sensitive to identifying dysplasia (Class 4)
- Evaluate integrity good hemisphere when considering hemispherectomy (Class 4)

Hypometabolism in TLE

Henry et al, 1993

¹⁸FDG-PET Co-Registered with T1 MRI Type 1 FCD: The second look effect

Salamon N, et al Neurology 2008

Multilobar FCD I and Normal MRI

Salamon N, et al Neurology 2008

PET Hypermetabolism & FCD 2-6% pediatric series

Bansal L et al, Epileps

PET: Other Ligands

- ¹¹C Flumazenil: Not helpful
 Benzodiazepine/GABA receptor antagonist
- ¹¹C α- Methyl Tryptophan: For TS
 Precursor to 5HT/amino acid transmitters
- ¹⁸FC WAY: Experimental
 - 5HT_{1A} Antagonist

- ¹¹C-PBR28 PET: Experimental
 - Peripheral Benzodiazepine Receptor Ligand-microglia

SPECT

- HMPAO, ECD (99-Technetium)
- Markers of CBF
- Long half life (6 hours)
- Can scan several hours after injection
- Can not quantify
- Always perform with EEG
- Timing of injection in relation to seizure critical

SPECT

- Interictal, SuSPECT: False lateralizing 10%
- Ictal Superior
- Subtraction Inter-Ictal from Ictal (or SPM)
 - Co-registration with structural MRI
 - Increases inter and intra rater agreement from 70 to 85% & localization value 31-74% to 74-93%
 - 80-90% when lesion present (Class 3 adults)

- 59-76% non lesional (Class 4)

- Reliability depends on timing/delay injection in relation to seizure onset (later injection increases false localization/lateralization)
- Propagation effects

O'Brien et al, 98, 99; Vera et al, 99

Ictal SPECT Co-registered with MRI

Courtesy P Jayakar MCH

Courtesy G Cascino. In Wyllie E Principles and Practice of Epilepsy

interictal

ictal

« SISCOM »

Courtesy C Chiron

SISCOM κ=0.36 66% all 24% TLE subtype 47% normal MRI

STATISCOM κ=0.81 84% all 68% TLE subtype 80% normal MRI Outcomes better

Statistical Ictal SPECT Voxel-Wise Statistical Threshold Difference N=87; controls =11

Kazemi et al Neurology 2009

N=160; 77 iEEG; 72 Seizures; 62 resection; 38 (61%) Engle I MRI negative (43%), unclear, small FCD NB 1.5T MRI

n		MEG	PET	iSPECT
62	Sensitivity	55		
	Specificity	75		
51	Sensitivity	56	59	
	Specificity	79	79	
34	Sensitivity	38		50
	Specificity			72
-27	Sensitivity	31	54	62
	Specificity	79	86	86

Knowlton R et al, Ann Neurol, 2008

Question 3

- Under what conditions is SPECT (ECD or HMPAO) most reliable
- 1. Inter-Ictal
- 2. Peri-ictal
- 3. Icta-ictal
- 4. Post- ictal

Summary

- Lesional (MRI) studies: PET and SPECT add little
 Unless wish to localize within large lesion
- FDG-PET: Non-lesional MRI helpful 30-60% (>TLE)
- Ictal (subtraction) SPECT when PET negative or unavailable
- 2nd look effect; re-review MRI based on new data
- Discordant Results
 Invasive monitoring
- Negative MRI: think genetic or inflammatory causes

Functional MRI (fMRI)

- Identify Epileptogenic Cortex
 - Interictal
 - Ictal
- Identify what to spare during epilepsy surgery
 - Motor
 - Sensory
 - Language
 - Memory

Blood Oxygen Level Dependent signal

Theural activity \rightarrow \uparrow blood flow \rightarrow \uparrow oxyhemoglobin \rightarrow \uparrow T2* \rightarrow \uparrow MR signal

BASAL STATE Normal CBF Basal level [Hbr] Basal CBV Normal MRI signal

ACTIVATED STATE

Increased CBF Decreased Hbr Increased CBV Increased MRI signal

Source: fMRIB Brief Introduction to fMRI

Motor & Sensory Mapping

- Extra-temporal lobe epilepsy
- Lesion (Tumor/AVM)
- Identification of Motor/Sensory strip
- Agreement with Evoked potential & electro-cortical stimulation (<5 mm)

<u>MOTOR</u> Finger Tapping Tongue Wiggling Foot Tapping

<u>SENSORY</u> Visual Flash (primary visual) Tones (primary auditory) Brush (Sensory strip) Face, Hand, Foot

Motor Mapping

Tongue Wiggling

Finger Tapping

L Foot Tapping

Language Mapping

- 30% patients atypical language (75% acquired L handedness)
 - vs 5% R handed controls and 22% L handed controls
- Selection of Tasks
- Determination of Language Dominance
- Location of Language Function
- Multiple Tasks
- Individual Analysis
- Correlation with Electro-cortical stimulation
- Correlation with Wada
- Resection fMRI negative safe
- Resection fMRI positive some peril

fMRI & Language Lateralization

- Agreement with Wada
 - Over 20 studies, more than 400 patients
 - 85-90% complete agreement
 - 10-15% partial disparity
 - Rare absolute discordance (1%)
- Excellent but not complete agreement with electro-cortical stimulation (localization)
- Predicts post operative language capacity
- fMRI better predictor of outcome than IAT

fMRI Language Paradigms

- Verbal Fluency

 (semantic/ phonologic)
- Semantic Decision
 (visual/auditory)
- Reading Comprehension

 (whole language)
- Auditory Comprehension
 (whole language)

fMRI Language Group Maps for Children Ages 4-12 years (n=68, p<0.05 corrected)

Auditory Category Decision

Listening to Stories

Auditory Description Decision Task Reading Stories (6-12, n=48)

30% MRI negative patients will have atypical language dominance LEFT RIGHT BILAT DIASCHESIS

Auditory Description Decision Task

Auditory Category

Listening to Stories

Reading Stories

fMRI Semantic Decision Task Predicts Post-Op Naming

fMRIAI

Wada LI

AI > 0.4 risk of language measure decline

Sabsevitz DS, et al. Neurology 2003

fMRI Language

- Activated Areas Involved, NOT Critical
- Critical Areas **NOT** always Activated
 - Blood flow response trigger threshold
 - Individual vs. Group analysis
 - Data analysis threshold
- False Lateralization: Homologous nondominant activation misinterpreted
- Null activation interpreted as no function

Failed fMRI

- Disruption **BOLD** Signal
 - Glioma, Edema & Mass Effect (Bookheimer et al, 1997)
 - AVM and Vascular Steal (Lehericy et al, 2002)
 - Post-Ictal state (Jayakar et al, 2002)
 - Arterial Stenosis (Rother et al, 2002)

Listen Repeat Sem Flu Phon Flu

Memory Paradigms: Material Specificity

- Verbal encoding
- Scene decision or encoding
- Mental navigation (Roland)
- Face recognition
- Pattern encoding

L>R Activation L=R Activation L=R Activation R≥L Activation R>L Activation

- HF and parahippocampal activation
- Functional Adequacy > Functional Reserve
- Activation linked to performance
- Has not predicted risk of amnesia

Predicts Post Surgical change in Scene Memory Adequacy not Reserve Rabin et al *Brain* 2004

Event related, forced encoding, design

- Verbal encoding
- Face encoding

10 controls; 72 patients (40 left; 68 MTS); 54 resection (29 left) *Simple Line Picture Encoding little effect

Bonelli S. B. et al., Brain 2010

Group Map: HF signal and change in verbal & visual memory

Left temporal lobe epilepsy

В

Right temporal lobe epilepsy

Bonelli S. B. et al., Brain 2010

Interictal fMRI

- Event related
 - On line EEG manual fMRI trigger
 - Post hoc analysis with continuous EEG
 - Older literature 50 events (only for patients with frequent spikes)
 - More recent can obtain data from few spikes; may augment by manipulating HDR function to optimize signal
 - $-\sim 67$ % of patients reliable data
 - Spike or slow wave may be mapped
- Relation to focus uncertain, as in MEG, but good concordance with invasive mapping

EEG Spike Event Related fMRI

Krakow et al. Brain 2000

EEG Spike Event Related fMRI

Neocortical focus

Mesial Temporal Focus

Krakow et al. Brain 2000

fMRI EEG BOLD response from generator of interictal spike

Fp1-Avg munhamm F3-Avg munuhum C3-Avg muny O1-Avg mmymymymym F7-Avg war Moren T3-Avg mm Mymm T5-Avg mulmum Fp2-Avg mmmmmm F4-Avg mmmmmmm C4-Avg mmmmmm P4-Avg mmmmm 02-Avg mmmmmmmm F8-Avg mmmmmm T4-Avg mary T6-Avg mymmm Fz-Avg MmmuMMmm Cz-Avg mmmumm Pz-Avg mountain F9-Avg www.m. T9-Avg www/Mmmm P9-Avg mmmmmmmmm F10-Avg monthlym T10-Avg www.muham P10-Avg mountain 100µV _____1s

Question 4

- Functional imaging may be used for all of the following except:
- 1. Identifying eloquent cortex
- 2. Source localization
- 3. Identifying co-morbidities
- 4. Predicting outcomes

Functional MRI: Practical Applications for Epilepsy

- Reliable for language lateralization

 More tasks the beter/ select task to target area of interest
- Agreement w/ invasive methods
- Predicts surgical outcome language and memory Guide for motor, sensory, language localization
- Reliable for Hippocampal memory (Untested for predicting amnesia)
- Interictal localization reliable for selected patients
- Ictal localization rare

Functional MRI: Practical Applications in Epilepsy

- Conditions where BOLD disrupted and data falsely lateralizing
- No activation is NON Diagnostic
- Repeat Atypical or Null activation studies: confirm with Wada/Electro-cortical stimulation

MRS

Ratio NAA/Cho: Decreased cell loss/gliosis Lactate peak: Anaerobic metabolism (bad)

ABnormal Hippocampus Mesial Temporal Sclerosis Low NAA High Choline ? Lactate

Normal Hippocampus

Metabolic Imaging MRS Lactate Peak

Diffusion Weighted Imaging

- Diffusability: Distance molecule of water will move
- Fractional Aniosotropy: Directionality of water molecule movement)
 - to identify long white matter tracts that underlie cortical function

Diffusion Weighted Imaging

- To identify perturbations in gray/white matter integrity
 - <u>Fractional Anisotropy (FA)</u> \rightarrow bundle organization & axonal directionality
 - <u>Mean Diffusivity (MD)</u> → overall density of axonal bundles & brain water content
 - <u>Radial Diffusivity (RD)</u> \rightarrow myelin content and axonal packing
 - <u>Axial Diffusivity (AD)</u> \rightarrow axon internal structure and coherence
- To identify long white matter tracts that underlie cortical function
- Seeds
 - fMRI activation
 - Anatomic regions (usually 2)
 - White matter tract strings (mid track)

- Motor/Sensory, Language, Visual (Meyer's loop)
- Avoid critical white matter tracts to avoid deficits

White Matter in the Language Network

Dorsal Stream

- Phonological & syntactic processing
- Working Memory
- Auditory-motor integration
- Tracts:
 - Arcuate Fasciculus (AF)
 - Superior Longitudinal Fasciculus (SLF)

Ventral Stream

- Lexical-semantic processing
- Mapping auditory speech sounds to meaning
- Tracts:
 - Uncinate Fasciculus (UF)
 - Inferior Frontal Occipital Fasciculus (IFOF)
 - Extreme Capsule (EmC)

Dubois et al, 2016

DWI Tractography: White Matter, Anatomic, Functional Seed Language, Meyers Loop, Motor Tracks

Shinoura, J Clin Neurosci 2009; Axer, Brain & Lang 2012, Chen, NeuroImage 2009

Multi-Modal Imaging

fMRI Language Comprehension (Listening to stories)

DTI Tractography Arcuate Fasciculus

FDG-PET

MRI

Epilepsy Surgery Evaluation Protocol

ILAE

Jayakar P. *Epilepsia* 2014

Conclusions: Functional Imaging

• MRI MRI MRI

- PET (interictal) and SPECT (ictal subtraction) to identify the seizure focus when MRI normal; comparable in utility
- fMRI to identify eloquent cortical areas to spare during epilepsy surgery
- fMRI may be used for source localization
- DWI to identify white matter tracts to minimize neurological deficits
- MRS: neuronal integrity/altered metalabomics

Question 5

- A good rule to follow when removing epileptic tissue in normal appearing brain from your hospital CEO family member when electrocaudery is broken, massive bleeding is occurring, & the blood pressure is dropping is
- 1. Always Panic
- 2. Never Panic
- 3. Panic only when safe to do so